Ref No:

< SRI KRISHNA INSTITUTE OF TECHNOLOGY, BENGALURU>

COURSE PLAN

Academic Year 2019-20

Program:	B E – Mechanical Engineering
Semester :	5
Course Code:	17ME53
Course Title:	Turbo Machines
Credit / L-T-P:	4 / 3-2-0
Total Contact Hours:	50
Course Plan Author:	B.M.Krishne Gowda

Academic Evaluation and Monitoring Cell

< #29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA Phone / Fax :+91 80 23721477 -STD- 080 23721315>

<http://www.skit.org.in: skit1princi@gmail.com: >

Table of Contents

17ME43: TURBO MACHINES	3
A. COURSE INFORMATION	
1. Course Overview	
2. Course Content	
3. Course Material	4
4. Course Prerequisites	5
5. Content for Placement, Profession, HE and GATE	6
B. OBE PARAMETERS	6
1. Course Outcomes	6
2. Course Applications	7
3. Mapping And Justification	
4. Articulation Matrix	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module – 2	
E1. CIA EXAM – 1	
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module – 3	
Module – 4	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	24
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	27
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	30
1. TLPA Parameters	30
2. Concepts and Outcomes:	31

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

17ME43: TURBO MACHINES

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME
Semester:	5	Academic Year:	2019-20
Course Title:	TURBO MACHINES	Course Code:	17ME53
Credit / L-T-P:	4 / 3-2-0	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	B.M.KRISHNE GOWDA	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : 80 %	SEE Target:	70.00%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Taashin	Identified Module	Dlooma
	Content			Blooms
ule		g Hours	Concepts	Learning
1		10		Levels
1	Introduction: Definition of turbo machine, parts of turbo machines,		Definition for TM	Understand
	Comparison with positive displacement machines, Classification,	(5,5)	Dimensionless	L2,
	Dimensionless		parameters.	
	parameters and their significance, Effect of Reynolds number, Unit			L3
	and specific quantities, model studies.		Efficiency Reheat	
	(Note: Since dimensional analysis is covered in Fluid Mechanics		factor model	
	subject, questions on dimensional analysis may not be given.		studies	
	However, dimensional			
	parameters and model studies may be given more weightage.)			
	Thermodynamics of fluid flow: Application of first and second law			
	of thermodynamics to turbo machines, Efficiencies of turbo machines,			
	Static and			
	Stagnation states, Incompressible fluids and perfect gases, overall			
	isentropic efficiency, stage efficiency (their comparison) and			
	polytropic efficiency for both compression and expansion processes. Reheat factor for			
	expansion process			
2	Energy exchange in Turbo machines: Euler's turbine equation,	10	Valo aity triangle	
2	Alternate form of Euler's turbine equation, Velocity triangles for		Velocity triangle. Work done and	L3
	different values of	(3, 3)	energy	LJ
	degree of reaction, Components of energy transfer, Degree of		transfer	
	Reaction, utilization factor, Relation between degree of reaction and		transfer	
	Utilization factor,			
	Problems.			
	General Analysis of Turbo machines: Radial flow compressors and			
	pumps – general analysis, Expression for degree of reaction, velocity			L3
	triangles,			
	Effect of blade discharge angle on energy transfer and degree of			
	reaction, Effect of blade discharge angle on performance, Theoretical			
	head – capacity			
	relationship, General analysis of axial flow pumps and compressors,			
	degree of reaction, velocity triangles, Problems.			
	10 Hours			
3	Steam Turbines: Classification, Single stage impulse turbine,	10	Enthalpy change.	Understand
	condition for maximum blade efficiency, stage efficiency, Need and		stage efficiencies	L3
	methods of			Understand
	compounding, Multi-stage impulse turbine, expression for maximum			L3,

	utilization factor. Reaction turbine – Parsons's turbine, condition for maximum utilization factor, reaction staging. Problems.			
4	Hydraulic Turbines: Classification, various efficiencies. Pelton turbine – velocity triangles, design parameters, Maximum efficiency. Francis turbine - velocity triangles, design parameters, runner shapes for different blade speeds. Draft tubes- Types and functions. Kaplan and (10 Hours)	(4, 6)	Efficiency, design parameters.	Understand L3, Understand L3
5	Propeller turbines - velocity triangles, design parameters. Problems.	10	D 1 . 1	TT. 1
5	Centrifugal Pumps: Classification and parts of centrifugal pump, different heads and efficiencies of centrifugal pump, Minimum speed for starting the flow, Maximum suction lift, Net positive suction head, Cavitation, Need for priming, Pumps in series and parallel. Problems. Centrifugal Compressors: Stage velocity triangles, slip factor, power input factor, Stage work, Pressure developed, stage efficiency and surging and problems. Axial flow Compressors: Expression for pressure ratio developed in a stage, work done factor, efficiencies and stalling. Problems.	(5, 5)	Power , work done factor, Efficiency.	Understand L3 Understand L3
-	Total	50		-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 - 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Module	Details	Chapters	Availability
S		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	1. An Introduction to Energy Conversion, Volume III, Turbo machinery, V.	1, 23, 5	In Lib/ In
	Kadambi and Manohar Prasad, New Age International Publishers, reprint 2008.		dept.Lib
1,2,3,4,	2. Turbines, Compressors & Fans, S. M. Yahya, Tata McGraw Hill Co. Ltd., 2nd	1, 2, 4,5	In Lib/ In
5	edition, 2002		dept.Lib
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
	1.Principals of Turbo machines, D. G. Shepherd, The Macmillan Company (1964).	1, 2,	In Lib.
5		3,4,5	
1,2,3,4,	2.Fluid Mechanics & Thermodynamics of Turbo machines, S. L. Dixon, Elsevier		In Lib.
5	(2005).	3,4,5	
	3.Text Book of Turbo machines, M. S. Govindegouda and A. M. Nagaraj, M. M. Publications, 4Th Ed, 2008		In Lib.
С	Concept Videos or Simulation for Understanding	-	-
C1	https://www.youtube.com/watch_time=7_min		
C2	https://www.youtube.com/watch?v=1tzToTrmzAk ,time= 6 min		
C3	https://www.youtube.com/watch?v=8Epf3U7WCZQ		
C4	https://nptel.ac.in/courses/112106200/		
C5	https://www.youtube.com/watch?v=8mnB7JGQ_CI		
C6	https://nptel.ac.in/courses/112103248/13 -1Hour 1 min		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-

F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	https://lecturenotes.in/materials/24627-notes-for-turbomachine		
2	http://web.iitd.ac.in/~pmvs/course_mel346.php		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Studer	Students must have learnt the following Courses / Topics with described Content							
Modu	Course	Course Name	Topic / Description	Sem	Remarks	Blooms		
les	Code					Level		
1	17ME33	Basics of	1. Knowledge on basic laws and	3		L2		
		thermodynamics	thermodynamic process					
2	17ME44	Fluid mechanics	Working principles of turbines ,pumps	4	GAP Seminar on	L3		
			and compressors and dimensional		Fluid Machines.			
			techniques.					

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Modu	Topic / Description	Area	Remarks	Blooms
les				Level
1	Fluid Machines / Knowledge of advanced	Higher Study	Gap - A seminar on Fluid Machines	Understand
	Machines			L3
2	CFD	Applications	GapSoftware tools	Understand
		in industries		L3

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Modu	Course	Course Outcome	Teach.	Concept	Instr	Assessment	Blooms'
les	Code.#	At the end of the course, student	Hours		Method	Method	Level
		should be able to					
1	17ME53.1	Understanding the parameters of fluid		Precise	Lecture	Assignmen	L2
		machines using dimensional method and		definition of		t, Unit Test	Understand
		calculate by dimensional technique.		TM and		& CIE	
				model			
				studies			
1	17ME53.2	Understanding the efficiency for		Efficiency	Lecture	Assignmen	L2
		different process and find it by using		of		t, Unit Test	Understand
		principles of thermodynamics.		processes.		& CIE	
2	17ME53.3	Understanding the components of	4	Energy	Lecture	Assignmen	L2
		energy transfer and find energy transfer		transfer		t, Unit Test	Understand
		and dor using velocity triangles.				& CIE	
2	17ME53.4	Understanding the of working		Enthalpy	Lecture	Assignmen	L2
		principles and find work done and dor		change		t, Unit Test	Understand
		for pumps and compressors using		-		& CIE	
3	1714052.5	velocity triangles.	4	Demon and	Lastana	A	1.2
3	17ME53.5	Understanding work done, efficiency		Power and efficiencies of		Assignmen t, Unit Test	L2 Understand
		of the single and multistage steam impulse type turbine and find these		impulse		& CIE	Understand
		using velocity triangles graphical		mpulse		a CIE	
		method.					
		memou.					

COURSE PLAN - CAY 2019-20

3		Understanding work done efficiency the steam reaction type turbine and find these using velocity triangles. graphical method.	6	Power and efficiencies of reaction type		U	L2 Understand
4		understanding the working principles Pelton turbine and determine the Design parameters using velocity triangles analytical method.	5	Work done	Lecture	Assignmen t, Unit Test & CIE	L2 Understand
4		Understanding the working principles of Francis turbine, Kaplan turbine and determine the Design parameters of these using velocity triangles by analytical method.	5	Power and Efficiency	Lecture	Assignmen t, Unit Test & CIE	L2 Understand
5		Explains the working and efficiencies of Centrifugal Pump and find these by analytical method.	5	Work done and efficiencies	Lecture	Assignmen t, Unit Test , & CIE	L2 Understand
5		Explains the working and efficiencies of Centrifugal and axial compressors and find these by analytical method	5	Power and stage efficiencies		Assignmen t unit test& CIE	L2 Understand
-	-	Total	50		-	-	L2-L2

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learning's to . . .

	is should be used to employ , upply the equipe feating of to the		
Modu	Application Area	CO	Level
les	Compiled from Module Applications.		
1	In research and development organizations in the analysis of model and prototype. (G.T.R.E	CO1	L2
)		
2	n research and development organizations for predicting the parameters for analysis of actual	CO2	
	TM.		
3	In research and development organizations for predicting the parameters for analysis of actual	CO3	L2
	turbines.		
4	In research and development organizations for predicting the parameters for analysis of actual	CO4	L3
	fluid machines		
5	Power generation in steam power plant	CO5	L2
6	Power generation in steam power plant	CO6	L3
7	Power generation in hydraulic power plant	CO7	L3
8	Power generation in hydraulic power plant	CO8	L3
9	Water well pumps and inclined mounted pumps.	CO9	L3
10	Refrigeration and air conditioning technology.	CO10	L3

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

acco	mpnsn	n.			
Mo	Map	ping	Mapping	Justification for each CO-PO pair	Lev
dule			Level		el
S					
-	СО	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1		'Engineering Knowledge:' - The knowledge of fluid parameters is required to	L2
			1	accomplish solution in designing fluid machines.	
1	CO1	PO2	2	Engineering Knowledge:' - Anlysing problems of fluid machines using	L2
				dimensional technique.	
	CO1	PO3		Engineering- Acquisition of Engineering Knowledge of basic of fluid parameters	L3
				and dimensional methods is essential to accomplish solutions to complex	
1			3	engineering problems in design of turbines	
	CO2	PO1		'Engineering Knowledge:' - Acquisition of Engineering Knowledge of principles of	L2
				<u>TD</u> is essential to accomplish solutions to complex engineering problems in fluid	
1			1	machines	
1	CO2	PO2	2	Engineering Knowledge:' - Anlysing problems of fluid machines using efficiency	L2
17ME	E53			Copyright ©2017. cAAS. All rights reserved.	

				for different process.	
	CO2	PO3		Engineering Knowledge:' - To the development of solutions or to design solutions	L3
				for complex problem and efficiency for different process and principles of	
1			3	thermodynamics are considered	
	CO3	PO1	1	Problem Analysis': The knowledge of energy transfer of fluid machines and DOR	L2
2	002	DOA	2	is required for the solution of problems.	1.2
2	CO3	PO2	2	Engineering Knowledge:' - Anlysing problems of fluid machines using velocity triangles.	L3
2	CO3	PO3	3	Engineering Knowledge:'-To the development of solutions or to design solutions for complex problems energy transfer and dor' using velocity triangles. are considered.	L2
2	CO4	PO1	1	The knowledge of working principle and work done required for the solution of	12
2				problems related to power absorbing machines	
2	CO4	PO2	2	Anlysing problems of fluid machines using velocity triangles.	L2
2	CO4	PO3	3	To the development of solutions or to design solutions for complex problems working principles, work done and dor for pumps and compressors using velocity triangles are considered.	
3	CO5	PO1	1	The knowledge of work done, efficiency of the single and multistage steam impulse type turbine is required for the solution of problems related to impulse turbine.	
3	CO5	PO2	2	Anlysing problems of fluid machines using velocity triangles	L2
5	CO5	PO3	2	To the development of solutions or to design solutions for complex problems work	
3	005	105	3	done, efficiency of the single and multistage steam impulse type turbine and using velocity triangle are considered.	
3	CO6	PO3	3	The knowledge of work done and efficiency is required for the solution of problems.	L2
4	CO7	PO1	1	Analysis of problems of fluid machines using velocity triangles	L2
	CO7	PO2		To the development of solutions or to design solutions for complex problems work done, efficiency of the steam reaction type turbine using velocity triangles are	
4			2	considered.	
4	CO7	PO3	3	The knowledge of working principles is required for the solution of problems relatet to impulse machines.	L2
4	CO8	PO1	1	The working principles of fluid machines of reaction type is required for the solution of problems.	L2
4	CO8	PO2	2	Anlysing problems of fluid machines using dimensional technique.	L2
	CO8	PO3		To the development of solutions or to design solutions for complex problems	L2
4			3	working principles and velocity triangles are considered.	
	CO9	PO1		The knowledge of working of fluid machines related to centrifugal flow pump	L2
5		DCT	1	is required for the solution of problems.	
5	CO9	PO2	2	Anlysing problems of fluid machines using velocity triangles.	L2
5	CO9	PO3	3	To the development of solutions or to design solutions for complex problems both working principles and velocity triangles are considered.	L3
	CO10	PO1			L2
5			1	centrifugal and axial type is required for the solution of problems.	
5	CO10	PO2	2	Anlysing problems of fluid machines using velocity triangles.	L2
_	CO10	PO3	-	To the development of solutions or to design solutions for complex problems both	L3
5			3	working principles and efficiencies and velocity triangles are considered.	

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

	11 0	11 5	, ź					<u> </u>										
-	-	Course Outcomes						Prog	gran	n Oi	itco	mes						-
Modu	CO.#	At the end of the course student	PC	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
les		should be able to	1	2	3	4	5	6	7	8	9	10	11	12	01	O 2	03	el
1	17ME53.1	Students should be able to				-	-	-	-	1	I	-	-	-	-	-	-	L2
		Understanding the parameters of																
		fluid machines using dimensional																
		method and calculate by dimensional																
		technique.																
1	17ME53.2	Students should be able to				-	-	-	-	-	-	-	-	-	-	-	-	L3
		Understanding the efficiency for	-															

		different process and find it by using																
		principles of thermodynamics.																1
2	17ME53.3	Students should be able to Understanding the components of energy transfer and find energy transfer and dor using velocity triangles.		V	V	-	-	-	-	-	-	-	-	-	-	-	-	L2
2	17ME53.4	Students should be able to Understanding the of working principles and find work done and dor for pumps and compressors using velocity triangles.		V	V	-	-	-	-	-	-	-	-	-	-	-	-	L3
3		Students should be able to Understanding work done, efficiency of the single and multistage steam impulse type turbine and find these using velocity triangles graphical method.		V	V	-	-	-	-	-	-	-	-	-	-	-	-	L3
3	17ME53.6	Students should be able to Understanding work done efficiency the steam reaction type turbine and find these using velocity triangles. graphical method.		V	V	-	-	-	-	-	-	-	-	-	-	-	-	L3
4	17ME53.7	Students should be able to understanding the working principles Pelton turbine and determine the Design parameters using velocity triangles analytical method.	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	I	-	-	-	I	-	L3
4	17ME53.8	Students should be able to Understanding the working principles of Francis turbine, Kaplan turbine and determine the Design parameters of these using velocity triangles by analytical method.		V	V	-	-	-	-	-	-	-	-	-	-	-	-	L3
5	17ME53.9	Students should be able to explains the working and efficiencies of Centrifugal Pump and find these by analytical method.	V	V	V	-	-	-	-	-	-	-	-	-	-	-	-	L3
5		Students should be able to explains the working and efficiencies of Centrifugal and axial compressors and find these by analytical method	\checkmark	V	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	L3
-	17ME53	Average attainment (1, 2, or 3)																-
-	PO, PSO	1.Engineering Knowledge; 2.Problem Investigations of Complex Problem 7.Environment and Sustainability; 6 11.Project Management and Finance Base Management; S3.Web Design	s; 8.Et	5.M hics	lode ; 9	rn Ind	Too livid	l U lual	lsag an	e; d T	6.Th Feam	ie iwoi	Eng rk;	inee 10.	r a Con	nd mu	Soc nica	ciety; tion;

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Modu les	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

	[,					
Modu	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
les						
1	Automated machine	Placement,	Presentation	17 th May 2019	Mr. Hanumatharaju,	PO1
	tools	GATE,			Dynamatic Industries	
		Higher				
		Study,				
		Entrepreneur				
		ship.				

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.			of quest		Exam		CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Introduction and Thermodynamics of	10	2	-	-	1	1	2	CO1, CO2	L2, L3
	fluid flow									
2	Energy exchange in Turbo machines.	10	2	-	-	1	1	2	CO3, CO4	L2, L3
	. General Analysis of Turbo machines									
3	Steam Turbines and Reaction turbine	10	-	-	2	1	1	2	CO5, CO6	L2, L3
4	Hydraulic Turbines and Francis turbine	10	-	2	2	1	1	2	CO7, C08	L3, L3
5	Centrifugal Pump and Centrifugal	10	-	2	2	1	1	2	CO9, CO10	L3, L3
	Compressor									
-	Total	50				5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

	siment of rearining outcomes for internal ex			
Mod		Weightage in	CO	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1, CO2, CO3,Co4	L2,L3,L2,L3
3,4	CIA Exam – 2	30	CO7, C08, CO9, CO10	L2,L3,L2,L3
5	CIA Exam – 3	30	CO5, CO6,	L2,L2
1, 2	Assignment - 1	10	CO1, CO2, CO3,Co4	L2,L2,L2,L2
3, 4	Assignment - 2	10	CO7, C08, CO9, CO10	L2,L2,L2,L3
5	Assignment - 3	10	CO5, CO6,	L2,L3
1, 2	Seminar - 1		-	-
3,4	Seminar - 2		-	-
5	Seminar - 3		-	-
1, 2	Quiz - 1		-	-
3,4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-	CO9, CO10	L2,L3
	Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction and TD fluid flow	Appr Time:	10 Hrs
а	Course Outcomes	СО	Blooms
-	Able to give precise definition of turbo machinery	-	Level
1	Identify various types of turbo machinery	CO1	L2
2	Analyze the performance of turbo machinery.	CO2	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Introduction Definition of turbo machine, parts of turbo machines, Comparison with positive displacement machines, Classification,	C01	L2
2	Dimensionless	C01	L2
	parameters and their significance, Effect of Reynolds number,		
3	Unit and specific quantities,	C01	L2
4	model studies.	C01	L2
5	problems	C01	L2
6	Thermodynamics of fluid flow: Application of first and second law of	C02	L3
	thermodynamics to turbo machines,		
7	Efficiencies of turbo machines, Static and Stagnation states,	C02	L3
0	Incompressible fluids and perfect gases, overall isentropic efficiency	C02	1.2
8	stage efficiency (their comparison) and polytropic efficiency for both compression and expansion processes.	C02	L3
9	Reheat factor for expansion process	C02	L3
10	problems	C02	L3
10		002	20
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	In research and development organizations in the analysis of model and prototype. (G.T.R.E)Machine tools are used to remove extra materials from the work	CO1	L2
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Define Turbo machines.	CO1	L2
2	With neat sketch explain the parts of a Turbo machines.	CO1	L2
3	What are the classification of Turbo machines?	CO1	L2
<u>4</u> 5	Wat are the differences between positive displacement machines and turbo machines?	CO1	L2
5	Explain the effect of Reynold number on the performance analysis of turbo machines	CO1	L2
6	Explain the significance of flow coefficient, head coefficient and power coefficient with equations.	CO1	L2
7	Two geometrically similar pumps are running at the same speed of 1000 rpm. One pump hasan impeller diameter of 0.3 m and lifts water at rate of 20 es against a head of 15 m.Determine the head and impeller diameter of other pump to deliver half the discharge.	CO1	L3
8	Define the following for a compression process : (i) Total to total efficiency (ii) Static to static efficiency	CO2	L3
9	What is Reheat factor? Show that the reheat factor is greater than unity in multistage turbine	CO2	L3
10	Explain static and stagnation state for a fluid. Obtain an expression relating static and stagnation temperature for a perfect gas.	CO2	L3
11	Define polytropic efficiency of a compressor. What is reheat factor in a multistage turbine? Prove that R.F is greater than unity.	CO2	L3
12	Air enters a compressor at a static pressure of 1.5 bar, a static temperature of 15 °C and a flow velocity of 50 m/s. At the exit the static pressure is 3 bar, the static temperature is 100° C and the flow velocity is 100 m/s. The outlet is 1 m above the inlet. Evaluate: i) The isentropic change in enthalpy	CO2	L3

	ii) The actual change in enthalpyiii) Efficiency of compressor.		
13	In a reservoir model built to a scale of 1:200, the rate of flow through the sluice into the canal is 2lpm and it takes 28.6h to drain the reservoir. Predict the prototype discharge and the time for emptying the reservoir	CO2	L2
14	What is Reheat factor? Show that the reheat factor is greater than unity in multistage turbine	CO2	L2
15	Combustion products approaches an axial fliw turbine rotor with absolute velocity of 550m/s and a direction of 18^0 from the wheel tangent the mass flow rate is 60kg/s.If the absolute velocity at the rotor exit is axially directed.when the blade speed is 300m/s, find the power output & DOR	CO2	L3
16	Derive an expression for energy transfer and DOR for Axial flow pumps and compressors.	CO1	L2
17	The total power input at a stage in an axial flow compressor with symmetric inlet and outlet velocity triangles (R=0.5) is 27.85kj/kg of air flow .If the blade speed is 180m/s thought the rotor, draw the velocity triangles and compute the inlet and outlet rotor blade angles. Assume axial velocity component to be 120m/s would you recommend this type of compressor.	CO2	L3
18	Two geometrically similar pumps are running at the same speed of 1000rpm. One has an impeller dia of 3.0m and lifts water at the rate of 20lt/s against a head of 15m.Determine the head and impeller dia of other pump to deliver half the discharge	CO2	L3
19	Define specific speed for pump and turbine. Explains the significance of flow coefficient, Head coefficient and power coefficient.	CO2	
e	Experiences	-	-
1		CO1	L2
2			
3		~ ~ ~	
4		CO2	L2
5			

Module – 2

Title:	ENERGY EXCHANGE IN TURBO MACHINES	Appr	10 Hrs
		Time:	
а	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Understanding the components of energy transfer and find energy transfer and dor using velocity triangles.	CO2	L2
2	Perform the preliminary design of turbo machines (pumps, rotary compressors and turbines)	CO2	L3
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
11	Energy exchange in Turbo machines: Euler's turbine equation, Alternate form of Euler's turbine equation,	CO3	L2
12	Velocity triangles for different values of degree of reaction,	CO3	L2
13	Components of energy transfer,	CO3	L2
14	Degree of Reaction, utilization factor,	CO3	L2
15	Relation between degree of reaction and Utilization factor,	CO3	L2
16	General Analysis of Turbo machines: Radial flow compressors and pumps – general analysis	CO4	L3

17	General Analysis of Turbo machines: Radial flow pumps,	CO4	L2
18	Effect of blade discharge angle on energy transfer and degree of reaction, Theoretical	CO4	L2
	head – capacity relationship,		
19	energy transfer and degree of reaction.	CO4	L2
20	problems	CO4	L3
с	Application Areas	-	•
-	Students should be able employ / apply the Module learnings to	-	-
1	In research and development organizations for predicting the parameters for analysis of actual turbines.	CO3	L2
2	In research and development organizations for predicting the parameters for analysis of actual fluid machines	CO4	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
	Derive an alternate form of Euler" s turbine equation and explain the significance of each	CO3	L2
20	energy components		
21	Draw the Velocity triangles for different values of degree of reaction,	CO3	L2
22	What is Degree of Reaction, utilization factor?	CO3	L2
23	Derive the Relation between degree of reaction and Utilization factor,	CO4	L2
24	Derive the expression for, energy transfer for axial flow compressor	CO4	L2
25	Derive the expression for, degree of reaction, for axial flow compressor	CO4	L2
26	Derive an expression of theoretical head capacity relationship of radial outward flow devices	CO3	L2
27	Explain the Theoretical head – capacity relationship	CO3	L2
28	An output of 10 KW was recorded on a turbine of 0.5 m dia running at a speed of 800 rpm under a head of 20 m. What is the diameter and output of another turbine which works under head of 180 m, at a speed of 200 rpm when their efficiencies are same? Find the specific speed and name the turbine which you preferred	CO4	L2
29	Radial outward flow turbo machine has no inlet whirl. The blade speed at exit is twice that at the inlet. The radial velocity remains constant. Inlet blade angle is 45° . Show that the degree of reaction for this machine is given by, R=(2 + cot 13 2)/4	CO3	L2
30	Air enters a compressor at a static pressure of 1.5 bar, a static temperature of 15 °C and aflow velocity of 50 m/s. At the exit the static pressure is 3 bar, the static temperature is100° C and the flow velocity is 100 m/s. The outlet is 1 m above the inlet. Evaluate: i) The isentropic change in enthalpy ii) The actual change in enthalpy iii) Efficiency of compressor.	CO3	L2
<u> </u>	Experiences	_	
1 1		- CO3	 L2
2		005	122

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs C	Code:	17ME53	Sem:	V	Marks:	30	Time: 7	5 minutes		
Cours	se:	TURBO M	ACHINES							
-	-	Note: Ansv	wer all quest	tions, each	carry equal ma	rks. Modul	le : 1, 2	Marks	СО	Level
1	а	Define Tur	fine Turbo machines.							L1
	b	With neat s	ketch explai	n the parts o	of a Turbo machi	nes.		4	CO1	L2
	c	What are th	ne classificat	ion of Turbo	machines?			3	CO2	L3
	d	pump hasai	wo geometrically similar pumps are running at the same speed of 1000 rpm. One ump hasan impeller diameter of 0.3 m and lifts water at rate of 20 es against a head f 15 m. Determine the head and impeller diameter of other pump to deliver half the ischarge					ıd	CO2	L3
					OR					
2	а				sion process : c to static effici	ency		5	CO2	L3
	b	What is Re turbine	heat factor?	Show that the	he reheat factor	is greater th	an unity in multista	ge 5	CO2	L3

	с	Explain static and stagnation state for a fluid. Obtain an expression relating static and stagnation temperature for a perfect gas.	5	CO2	L3
3	а	Derive an alternate form of Euler" s turbine equation and explain the significance of each energy components	5	CO3	L2
	b	Draw the Velocity triangles for different values of degree of reaction,	4	CO4	L3
	d	An output of 10 KW was recorded on a turbine of 0.5 m dia running at a speed of 800 rpm under a head of 20 m. What is the diameter and output of another turbine which works under head of 180 m, at a speed of 200 rpm when their efficiencies are same? Find the specific speed and name the turbine which you preferred	6	CO3	L3
		OR			
4	а	Derive an energy transfer for axial flow compressor.	5	CO4	L2
	b	Why the discharge blade angle has considerable effect in the analysis of a turbo machine?	4	CO3	L2
	с	A hydraulic reaction turbine of the radial inward flow type, works under a head of 160 m of water. At the point of fluid entry, the rotor blade angle is 119 ° and the diameter of the runner 3.65 m. At the exit, the runner diameter is 2.45m. If the absolute velocity at the wheel outlet is radially directed with a magnitude of 15.5 m/s and the radial component of velocity at the inlet is 10.3 m/s. Determine : i) the power developed by the machine, for a flow rate of 110 m3/s ; ii) the degree of reaction and iii) the utilization factor.	6	CO4	L3

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Note. A	distinct assigni		U U	Iodel Assignme	nt Question	15			
Crs Cod	le: 17ME53	Sem:	IV	Marks:	10		90 – 120 n	ninutes	
Course:		MACHINES		i i i i i i i i i i i i i i i i i i i	Module		<u>, , , , , , , , , , , , , , , , , , , </u>	mates	
				Each assignme		,			
SNo	USN		-	Assignment De		1	Marks	CO	Level
1		Define Turb		0	•		10	CO1	L2
2		With neat sk	etch explain	n the parts of a '	Turbo mach	nines.	10	CO1	L2
3				ion of Turbo ma			10	CO1	L2
4		Wat are the turbo machi		s between posit	tive displac	cement machines an	nd 10	CO1	L2
5		Explain th analysis of			umber or	the performance	ce 10	CO1	L2
6		Explain the coefficient v			cient, head	coefficient and pow	er 10	CO2	L2
7		1000 rpm. C at rate of 20	One pump h es against a	asan impeller d	liameter of Determine	tt the same speed 0.3 m and lifts wat the head and impell ge.	er	CO1	L2
8				r a compression cy (ii) Static to		iency	10	CO1	L2
9		What is Reh in multistage		Show that the r	eheat facto	r is greater than uni	ty 10	CO1	L2
10				nation state fo ation temperatu		Obtain an expression fect gas.	on 10	CO1	L2
11		Define poly	tropic effici		ressor. What	at is reheat factor in	a 10	CO1	L2
12		temperature static pressu velocity is 1	of 15 °C a rre is 3 bar, 00 m/s. The opic change al change in	and a flow velo the static temp outlet is 1 m al in enthalpy enthalpy	ocity of 50 perature is	of 1.5 bar, a stat m/s. At the exit the exit the the exit the exit the exit the exit the exit the flow of the flow of the the flow of the exit of the	ne	CO1	L2
13		In a reservoi the sluice in	ir model bui to the canal	It to a scale of 1 is 21pm and it t	akes 28.6h	ate of flow through to drain the reservo nptying the reservoi		CO1	L2

	COURSE PLAIN - CAT 2019-20			
14	What is Reheat factor? Show that the reheat factor is greater than unity in multistage turbine	10	CO1	L2
15	Combustion products approaches an axial fliw turbine rotor	10	CO1	L2
	with absolute velocity of 550m/s and a direction of 18°			
	from the wheel tangent the mass flow rate is 60kg/s. If the			
	absolute velocity at the rotor exit is axially directed when			
	the blade speed is 300m/s, find the power output & DOR			
16		10	CO2	L2
10	Derive an expression for energy transfer and DOR for	10	002	L2
17	Axial flow pumps and compressors.	10	002	1.2
17	The total power input at a stage in an axial flow compressor	10	CO2	L2
	with symmetric inlet and outlet velocity triangles (R=0.5) is			
	27.85kj/kg of air flow .If the blade speed is 180m/s thought			
	the rotor, draw the velocity triangles and compute the inlet			
	and outlet rotor blade angles. Assume axial velocity			
	component to be 120m/s would you recommend this type			
	of compressor.			
18	Two geometrically similar pumps are running at the same	10	CO1	L2
	speed of 1000rpm. One has an impeller dia of 3.0m and			
	lifts water at the rate of 20lt/s against a head of			
	-			
	15m.Determine the head and impeller dia of other pump to			
10	deliver half the discharge	10	CO1	10
19	Define specific speed for pump and turbine. Explains the	10	CO1	L2
	significance of flow coefficient, Head coefficient and			
	power coefficient.			
20	Derive an alternate form of Euler" s turbine equation and explain the	10	CO1	L2
	significance of each energy components	1.0	2 24	
21	Draw the Velocity triangles for different values of degree of reaction,	10	CO1	L2
22	What is Degree of Reaction, utilization factor?	10	CO2	L2
23	Derive the Relation between degree of reaction and Utilization factor,	10 10	CO2	L2 L2
24 25	Derive the expression for, energy transfer for axial flow compressor Derive the expression for, degree of reaction, for axial flow	10	CO1 CO3	L2 L2
23	compressor	10	005	L2
26	Derive an expression of theoretical head capacity relationship of radial	10	CO3	L2
20	outward flow devices	10	005	22
27	Explain the Theoretical head – capacity relationship	10	CO3	L2
28	An output of 10 KW was recorded on a turbine of 0.5 m dia running at	10	CO4	L2
	a speed of 800 rpm under a head of 20 m. What is the diameter and			
	output of another turbine which works under head of 180 m, at a speed			
	of 200 rpm when their efficiencies are same? Find the specific speed			
20	and name the turbine which you preferred	10	004	1.0
29	Radial outward flow turbo machine has no inlet whirl. The blade speed	10	CO4	L2
	at exit is twice that at the inlet. The radial velocity remains constant. Inlet blade angle is 45° . Show that the degree of reaction for this			
	machine is given by, $R=(2 + \cot 13 2)/4$			
30	Air enters a compressor at a static pressure of 1.5 bar, a static	10	CO4	L2
20	temperature of 15 °C and aflow velocity of 50 m/s. At the exit the static	10		
	pressure is 3 bar, the static temperature is100° C and the flow velocity			
	is 100 m/s. The outlet is 1 m above the inlet. Evaluate: i) The isentropic			
	change in enthalpy			
	ii) The actual change in enthalpy			
	iii) Efficiency of compressor.			<u> </u>
31	Define Turbo machines.	10	CO3	L2
32	With neat sketch explain the parts of a Turbo machines.	10	CO3	L2
33	What are the classification of Turbo machines?	10	CO4	L2
34	Two geometrically similar pumps are running at the same speed of 1000 ram. One pump basen impeller diameter of 0.3 m and lifts water	10	CO3	L2
	1000 rpm. One pump hasan impeller diameter of 0.3 m and lifts water at rate of 20 es against a head of 15 m. Determine the head and impeller			
	at rate of 20 es against a nead of 15 m. Determine the nead and imperier			

	diameter of other pump to deliver half the discharge			
35	Draw the Velocity triangles for different values of degree of reaction,	10	CO3	L2
36	An output of 10 KW was recorded on a turbine of 0.5 m dia running at a speed of 800 rpm under a head of 20 m. What is the diameter and output of another turbine which works under head of 180 m, at a speed of 200 rpm when their efficiencies are same? Find the specific speed		CO3	L2
	and name the turbine which you preferred			

D2. TEACHING PLAN - 2

Module – 3

Title:	STEAM TURBINE	Appr Time:	10 Hrs
а	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Students should be able to Understanding work done, efficiency of the single and multistage steam impulse type turbine and find these using velocity triangles graphical method.	CO5	L2
2	Students should be able to Understanding work done, efficiency of the single and multistage steam reaction turbine and find these using velocity triangles graphical method.	CO6	L2
b	Course Schedule		
Class No		-	-
21	Steam Turbine: working principle, classification	CO3	L2
22	Single stage impulse turbine, Need and methods of compounding,	CO3	L3
23	condition for maximum blade efficiency	CO3	L3
23	stage efficiency, Multi-stage impulse turbine, expression for maximum utilization factor	CO3	L3 L3
25	problems	CO4	L3
26	Reaction turbine	CO4	L3
27	Parsons's turbine	CO4	L3
28	condition for maximum utilization factor	CO4	L3
29	Reaction staging	CO4	L3
30	Problems.	CO4	L3
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Power generation in steam power plant	CO5	L3
2	Power generation in steam power plant	CO6	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
37	Why is compounding of steam turbine necessary?	CO5	L2
38	Describe the velocity compounding of steam turbines.	CO6	L2
39	Explain briefly a two stage pressure compounded impulse turbine and show the pressure and velocity variations across the turbine.	CO5	L2
40	Prove that the maximum rotor efficiency with equiangular rotor blades for impulse turbines	CO6	L3
41	What is meant by reaction staging? Derive the maximum stage efficiency of Parson's reaction turbine.	CO5	L3
42	Difference between impulse type and reaction type	CO6	L2
	single stage impulse turbine rotor has a diameter of 1.2m running at 3000 rpm. The nozzle angle is 18° . Blade speed ratio is 0.42. The ratio of relative velocity at outlet to relative velocity at inlet is 0.9. The outlet angle of the blade is 3° smaller than the inlet angle. The steam flow rate is 5kg/s. Draw the velocity diagram and find the following : i) Velocity of whirl ii) Axial thrust on the bearings iii) Blade angles	CO5	L3
43	iv) Power developed.		
44	Draw the inlet and exit velocity triangles for a single stage steam turbine.	CO6	L3

	Derive for maximum blade efficiency		
	Define and explain i) nozzle efficiency ii) diagram efficiency iii) stage efficiency	CO5	L2
45	iv) compounding of steam turbines.		
	In a curtis stage turbine, steam enters the first row of moving blades at 700m/s. The	CO6	L3
	outletangles of the nozzle, the first rotor blade, the stator blade and the last rotor blade37°.		
	The mean blade speed is 160m/sec, the bladerespectively are 17°, 23°, coefficient is 0.93		
	for all blades and steam flow rate is 162 kg/min. Estimate i) power		
46	developed in the stage ii) rotor efficiency iii) axial thrust and iv) tangential force on blades		
e	Experiences	-	-
1		CO6	L2
2			
3			
4		CO6	L2
5			

Module-4

Title:	HYDRAULIC TURBINES	Appr Time:	10 Hrs
а	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Students should be able to understanding the working principles Pelton turbine and determine the Design parameters using velocity triangles analytical method.	CO7	L3
2	Students should be able to Understanding the working principles of Francis turbine, Kaplan turbine and determine the Design parameters of these using velocity triangles by analytical method.		L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
31	Hydraulic Turbines: Classification,	CO7	L2
32	various efficiencies.	CO7	L2
33	Pelton turbine – velocity triangles,	CO7	L3
34	design parameters, Maximum efficiency.	CO7	L3
35	Problems.	CO7	L3
36	Francis turbine - velocity triangles, design parameters,	CO8	L3
37	runner shapes for different blade speeds.	CO8	L3
38	Draft tubes- Types and functions.	CO8	L2
39	Kaplan and Propeller turbines - velocity triangles, design parameters.	CO8	L3
40	Problems.	CO8	L3
с	Application Areas	-	
-	Students should be able employ / apply the Module learnings to	_	_
1	Power generation in Hydroelectric power plant	CO7	L3
2	Power generation in Hydroelectric power plant	CO8	L3
d	Review Questions	-	-
-	What is Undroulis Turkings and evaluin the classification	CO7	L1
47	What is Hydraulic Turbines and explain the classification,		
48	Explain the various efficiencies.	CO7	L2
49	Derive the expression for work done for pelton wheel	CO8	L3 L3
50	Derive the expression for condition for Maximum efficiency of pelton wheel	CO7	
51 52	Show that for maximum utilization, the speed of the wheel is equal to half the speed of jet. Derive the expression for work done for Francis turbine	CO8 CO8	L3 L3
		C08	
53 54	Explain the runner shapes for different blade speeds. What is Draft tube and Explain the types and functions.	C08	L2 L2
55	Kaplan and Propeller turbines - velocity triangles, design parameters.	C08	L2 L3
55	A Kaplan turbine develops 9000 kW under a head of 10m. Overall efficiency of the		L3 L3
	turbineis 85%. The speed ratio based on outer diameter is 2.2 and flow ratio 0.66.		15
	Diameter of theboss is 0.4 times the outer diameter of the runner. Determine the diameter		
57	of the runner, boss diameter and specific speed of the runner.		

e	Experiences	-	-
1		CO7	L2
2			
3			
4		CO8	L2
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs C	Code:	17ME53	Sem:	V	Marks:	30	Time:	75 minutes		
Cours	se:	TURBO M.	ACHINES			÷				
-	•	Note: Answ	ver all quest	ions, each	carry equal ma	rks. Modu	ıle : 3, 4	Marks	CO	Level
1	а				ure compounder coss the turbine.	d impulse	turbine and show	the 7	CO7	L1
	b	Prove that the the the the termines	he maximum	n rotor effic	iency with equia	ingular rote	or blades for impuls	e 8	CO8	L2
					OR					
2	а		explain i) no		ency ii) diagram	efficiency	iii) stage efficiency	iv) 7	CO7	L3
	b	outlet angle blade37°. 7 23°,coeffici	es of the noz The mean b ent is 0.93 f loped in the	zzle, the fir lade speed or all blade	st rotor blade, t l is 160m/sec, es and steam flo	he stator b the blade w rate is 1	g blades at700m/s. T blade and the last ro respectively are 1 62 kg/min. Estimate must and iv) tangen	otor 17°, e i)	CO8	L3
3	а	Derive the e	expression for	or work do	ne for pelton wh	eel		7	CO8	L3
-		A Kaplan tu turbineis 85 Diameter of	urbine develo 5%. The spec f theboss is	ops 9000 k ed ratio bas 0.4 times	W under a head sed on outer dia	of 10m. O meter is 2 ter of the	verall efficiency of .2 and flow ratio 0. runner. Determine runner.	66.	CO8	L3
					OR					
4	a	Derive the e	expression for	or condition	for Maximum e	fficiency of	of pelton wheel	7	CO7	L3
	b	Show that for of jet.	or maximum	utilization	, the speed of th	e wheel is	equal to half the sp	eed 8	CO8	L3

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

11010.1	a unstinet a	Sign	field to be assig	neu to caen s	student.					
				Mode	l Assignment	Questions				
Crs Co	ode: 17M	E53	Sem:	V	Marks:	10	Time:	90 – 120 n	ninutes	
Course	e: TUR	BO N	ACHINES			Module : 3,	4			
Note:	Each studer	nt to a	nswer 2-3 assig	nments. Eacl	h assignment	carries equal	mark.			
SNo	USN			Assignment Description						Level
1			Why is compounding of steam turbine necessary?						CO5	L2
2			Describe the ve	Describe the velocity compounding of steam turbines.						L2
3			Explain briefly	a two stage	pressure con	pounded imp	oulse turbine an	d 10	CO5	L2
			show the pressu	ire and veloc	ity variations	across the tur	bine.			
4			Prove that the n	naximum rote	or efficiency	with equiangu	lar rotor blades	10	CO6	L3
			for impulse turb							
5	5 What is meant by reaction staging? Derive the maximum stage						e 10	CO5	L3	
			efficiency of Pa	rson's reaction	on turbine.					

<u>6</u> 7	Difference between impulse type and reaction type single stage impulse turbine rotor has a diameter of 1.2m running at 3000 rpm. The nozzle angle is 18°. Blade speed ratio is 0.42. The ratio of relative velocity at outlet to relative velocity at inlet is 0.9. The outlet angle of the blade is 3 ° smaller than the inlet angle. The steam flow rate is 5kg/s. Draw the velocity diagram and find the following :	10 10	CO6 CO5	L2 L3
	i) Velocity of whirl ii) Axial thrust on the bearings iii) Blade angles			
8	iv) Power developed. Draw the inlet and exit velocity triangles for a single stage steam turbine.	10	CO6	L3
	Derive for maximum blade efficiency			
9	define and explain i) nozzle efficiency ii) diagram efficiency iii) stage efficiency iv) compounding of steam turbines.	10	CO5	L2
10	In a curtis stage turbine, steam enters the first row of moving blades at 700m/s. The outletangles of the nozzle, the first rotor blade, the stator blade and the last rotor blade37°. The mean blade speed is 160m/sec, the bladerespectively are 17°, 23°,coefficient is 0.93 for all blades and steam flow rate is 162 kg/min. Estimate i) power developed in the stage ii) rotor efficiency iii) axial thrust and iv) tangential force on blades	10	CO6	L3
11	What is Hydraulic Turbines and explain the classification,	10	CO7	L1
12	Explain the various efficiencies.	10	C07	L1 L2
12	Derive the expression for work done for pelton wheel	10	C07 C08	L2 L3
13	Derive the expression for condition for Maximum efficiency of pelton wheel	10	C07	L3
15	Show that for maximum utilization, the speed of the wheel is equal to half the speed of jet.	10	CO8	L3
16	Derive the expression for work done for Francis turbine	10	CO8	L3
17	Explain the runner shapes for different blade speeds.	10	CO8	L2
18	What is Draft tube and Explain the types and functions.	10	CO8	L2
19	Kaplan and Propeller turbines - velocity triangles, design parameters.	10	CO8	L3
20	A Kaplan turbine develops 9000 kW under a head of 10m. Overall efficiency of the turbineis 85%. The speed ratio based on outer diameter is 2.2 and flow ratio 0.66. Diameter of theboss is 0.4 times the outer diameter of the runner. Determine the diameter of the runner, boss diameter and specific speed of the runner.	10	CO8	L3
21	Explain briefly a two stage pressure compounded impulse turbine and show the pressure and velocity variations across the turbine.	10	CO5	L2
22	Prove that the maximum rotor efficiency with equiangular rotor blades for impulse turbines	10	CO6	L3
23	Define and explain i) nozzle efficiency ii) diagram efficiency iii) stage efficiency iv) compounding of steam turbines.	10	CO5	L2
24	In a Curtis stage turbine, steam enters the first row of moving blades at700m/s. The outlet angles of the nozzle, the first rotor blade, the stator blade and the last rotor blade37°. The mean blade speed is 160m/sec, the blade respectively are 17°, 23°,coefficient is 0.93 for all blades and steam flow rate is 162 kg/min. Estimate i) power developed in the stage ii) rotor efficiency iii) axial thrust and iv) tangential force on blades	10	CO6	L3
25 26	Derive the expression for work done for pelton wheel A Kaplan turbine develops 9000 kW under a head of 10m. Overall efficiency of the turbineis 85%. The speed ratio based on outer diameter is 2.2 and flow ratio 0.66. Diameter of theboss is 0.4 times the outer diameter of the runner. Determine the diameter of the runner,boss diameter and specific speed of the runner.	10 10	CO5 CO6	L3 L3
27	Derive the expression for condition for Maximum efficiency of pelton wheel	10	CO5	L3
28	Show that for maximum utilization, the speed of the wheel is equal to half the speed of jet.	10	CO6 CO8	L3 L3
29	Derive the expression for work done for Francis turbine	10		

30	Explain the runner shapes for different blade speeds.	10	CO8	L2
31	What is Draft tube and Explain the types and functions.	10	CO8	L2
32	Kaplan and Propeller turbines - velocity triangles, design parameters.	10	CO8	L3
33	Prove that the maximum rotor efficiency with equiangular rotor blades for impulse turbines	10	CO6	L3
34	Define and explain i) nozzle efficiency ii) diagram efficiency iii) stage efficiency iv) compounding of steam turbines.	10	CO5	L2
35	Derive the expression for work done for pelton wheel	10	CO8	L3
36	Derive the expression for condition for Maximum efficiency of pelton wheel	10	CO7	L3

D3. TEACHING PLAN - 3

Module – 5

Title:	CENTRIFUGAL PUMPS AND COMPRESSORS	Appr	10 Hrs
		Time:	DI
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Students should be able to explains the working and efficiencies of Centrifugal and axial pump find these by analytical method		L2
2	Students should be able to explains the working and efficiencies of Centrifugal and axial compressors and find these by analytical method	CO10	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
41	Centrifugal Pumps: Classification and parts of centrifugal pump,	CO9	L3
42	different heads and efficiencies of centrifugal pump,	CO9	L3
43	Minimum speed for starting the flow, Maximum suction lift, Net positive suctio	CO9	L3
44	Cavitation, Need for priming, Pumps in series and parallel.	CO9	L3
45	Problems.	CO9	L3
46	Centrifugal Compressors: Stage velocity triangles, slip factor, power input factor	CO10	L3
47	Stage work, Pressure developed, stage efficiency and surging	CO10	L3
48	Axial flow Compressors: Expression for pressure ratio developed in a stage,	CO10	L3
49	work done factor, efficiencies and stalling. Problems.	CO10	L3
50	Problems.	CO10	L3
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Water well pumps and inclined mounted pumps.	CO9	L3
2	Refrigeration and air conditioning technology.	CO10	L3
d	Review Questions		_
-	The attainment of the module learning assessed through following questions	_	_
58	Define Centrifugal Pumps: and explain Classification of Centrifugal Pumps	CO9	L3
59	With neat sketch explain parts of centrifugal pump,	CO9	L3
60	What are the different heads and efficiencies of centrifugal pump,	CO9	L3
	Minimum speed for starting theflow, Maximum suction lift, Net positive suction	CO9	L3
61	head		
62	Explain the Cavitation, Need for priming, Pumps in series and parallel.	CO9	L3
	A three stage centrifugal pump has impeller 40 cm in decimeter and '2.5 cm wide at outlet. The vanes are cuived back at an angle of 30° and reduces the circumferential area by 15%. The manometric efficiency = 85% and overall efficiency = 75%. Determine the		L3
62	headgenerated by the pump when running at 1200 rpm and discharges 0.06 m3/sec. Find		
63	the shaftpower also.	CO10	1.2
64	Define Stage velocity triangles, slip factor, power input facto	CO10	L3
65	Explain the Stage work, stage efficiency and surging with respect to compressor.	CO10	L3

66	Expression for pressure ratio developed in a stage for Axial flow Compressors:	CO10	L3
67	Define work done factor, efficiencies and stalling.	CO10	L3
	An axial flow compressor has the following data entry condition 1 bar, 20	CO10	L3
	reaction 50% mean blade ring diameter 36 cm, Rotational speed 18000rpm blade height at		
	entry 6 cm, Blade angle at rotor and stator exit 65' axial velocity 180 m/s mechanical		
	efficiency 0.967.Find		
	(i) Guide blade angle at outlet.		
68	(ii) Power required to drive the compressor.		
	Minimum speed for starting the flow, Maximum suction lift, Net positive suction	CO9	L2
69	head		
70	Explain the Cavitation, Need for priming, Pumps in series and parallel.	CO9	L2
71	Define work done factor, efficiencies and stalling.	CO9	L2
e	Experiences	-	-
1		CO10	L2
2		CO9	

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs C	Code:	17ME53	Sem:	V	Marks:	30	Time: 7	5 minutes		
Cour	se:	TURBO M	IACHINES							
-	-	Note: Answ	ver all ques	tions, each c	carry equal ma	rks. Modul	e : 5	Marks	CO	Level
1	а	Minimum suction hea	-	r starting	the flow, Ma	ximum suc	tion lift, Net positi	ve 5	CO9	L3
	b	Explain th	e Cavitation	, Need for p	riming, Pumps	in series and	l parallel.	5	CO9	L3
	с	Define wor	rk done facto	or, efficienci	es and stalling.		-	5	CO9	L3
2	a	Minimum s head	speed for st	arting theflo	ow, Maximum	suction lift,	Net positive suction	on 7	CO9	L3
	b	outlet.The area by 159 The manor headgenera	vanes are cu: 6. netric effici	ived back at ency = 85% ump when r	an angle of 30° and overall e	and reduces	r and '2.5 cm wide a s the circumferential 75%. Determine ti scharges 0.06 m3/se	ne	CO9	L3
3	a	Explain the compressor	-	ocity triang	les, slip factor	r, power in	put facto centrifug	al 7	CO10	L3
	b	-	expression	for pressur	re ratio develo	oped in a s	stage for Axial flo	w 8	CO10	L3
4	a	Explain the Compresso	-	ocity triang	les, slip factor	; power inj	put facto Axial flo	w 7	CO10	L3
	b	An axial flo reaction 50 height at er mechanical (i) Guide bl	ow compress % mean bla ntry 6 cm, B efficiency (lade angle at	ade ring dian lade angle a 0.967.Find	t rotor and stat	Rotational sp	n 1 bar, 20 peed 18000rpm bla ixial velocity 180 m		CO10	L3

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

Cre Cr	day 171/1252	Model Assignment Questions 3 Sem: V Marks: 10 Time: 9	0 120	innte-	
Crs Co Course		B Sem: V Marks: 10 Time: 9 MACHINES Module : 5 Module : 5 </th <th>0 – 120 n</th> <th>ninutes</th> <th></th>	0 – 120 n	ninutes	
		answer 2-3 assignments. Each assignment carries equal mark.			
SNo	USN	Assignment Description	Marks	СО	Level
1	0511	Explain the Classification and parts of centrifugal pump,	10	CO9	Level L2
2		different heads and efficiencies of centrifugal pump,	10	CO10	L2 L2
3		Minimum speed for starting the	10	CO9	L2
5		flow, Maximum suction lift, Net positive suctio	10	00)	122
4		Cavitation, Need for priming, Pumps in series and parallel.	10	CO9	L2
5		An axial flow compressor has the following data entry condition 1 bar		C09	L2 L3
5		20 reaction 70% mean blade ring diameter 36 cm, Rotational speed		00	L3
		10000rpm blade height at entry 6 cm, Blade angle at rotor and stator			
		exit 65' axial velocity 180 m/s mechanical efficiency 0.867.Find			
		(i) Guide blade angle at outlet.			
		(ii) Power required to drive the compressor.			
6		Centrifugal Compressors: Stage velocity triangles, slip factor, power	10	CO10	L2
		input factor			
7		Stage work, Pressure developed, stage efficiency and surging	10	CO10	L2
8		Derive an expression for pressure ratio developed in a stage,	10	CO9	L2
9		work done factor, efficiencies and stalling. Problems.	10	CO10	L2
10		A three stage centrifugal pump has impeller 40 cm in decimeter and	10	CO9	L3
		'2.5 cm wide at outlet. The vanes are cuived back at an angle of 30° and			
		reduces the circumferential area by 15%.			
		The manometric efficiency = 85% and overall efficiency = 75% .			
		Determine the headgenerated by the pump when running at 1200 rpm and discharges 0.06 m3/sec. Find the shaftpower also.	L		
11		Define Stage velocity triangles, slip factor, power input facto	10	CO10	L2
12		Explain the Stage work, stage efficiency and surging with respect to		C010	L2 L3
12		compressor.	10	09	L3
13		Expression for pressure ratio developed in a stage for Axial flow	10	CO9	L3
15		Compressors:	10	00	L3
14		Define work done factor, efficiencies and stalling.	10	CO9	L2
15		An axial flow compressor has the following data entry condition 1 bar		CO10	L3
10		20	, 10	0010	20
		reaction 50% mean blade ring diameter 36 cm, Rotational speed	L		
		18000rpm blade height at entry 6 cm, Blade angle at rotor and stator	•		
		exit 65' axial velocity 180 m/s mechanical efficiency 0.967.Find			
		(i) Guide blade angle at outlet.			
		(ii) Power required to drive the compressor.			
16		Minimum speed for starting the flow, Maximum suction lift,	10	CO9	L2
		Net positive suction head			
17		Explain the Cavitation, Need for priming, Pumps in series and	10	CO9	L2
1.0		parallel.	10	~~~	
18		Define work done factor, efficiencies and stalling.	10	CO9	L2
19		Minimum speed for starting the flow, Maximum suction lift	10	CO10	L2
		Net positive suction head			
20		Explain the Cavitation, Need for priming, Pumps in series and	10	CO10	L2
0.1		parallel.	10	0010	1.0
21		Define work done factor, efficiencies and stalling.	10	CO10	L2
22		Minimum speed for starting theflow, Maximum suction lift, Net positive suction head	: 10	CO10	L2
23		A three stage centrifugal pump has impeller 40 cm in decimeter and	10	CO9	L3
23		2.5 cm wide at outlet. The vanes are cuived back at an angle of 30° and	10	009	LJ
		reduces the circumferential area by 15%.			
		The manometric efficiency = 85% and overall efficiency = 75%			
		Determine the headgenerated by the pump when running at 1200 rpm			
		and discharges 0.06 m3/sec. Find the shaftpower also.			
24		Explain the Stage velocity triangles, slip factor, power input factor	10	CO10	L2
		centrifugal compressor		-	

25	Derive an expression for pressure ratio developed in a stage for Axial flow Compressors:	10	CO9	L2
26	Explain the Stage velocity triangles, slip factor, power input facto Axial flow Compressors:	10	CO9	L2
27	An axial flow compressor has the following data entry condition 1 bar, 20 reaction 70% mean blade ring diameter 36 cm, Rotational speed 10000rpm blade height at entry 6 cm, Blade angle at rotor and stator exit 65' axial velocity 180 m/s mechanical efficiency 0.867.Find (i) Guide blade angle at outlet. (ii) Power required to drive the compressor.	10	CO9	L3
28	Explain the Classification and parts of centrifugal pump,	10	CO10	L2
29	different heads and efficiencies of centrifugal pump,	10	CO10	L2
30	Minimum speed for starting the flow, Maximum suction lift, Net positive suctio	10	CO9	L2
31	Cavitation, Need for priming, Pumps in series and parallel.	10	CO10	L2
32	Problems.	10	CO9	L2
33	Centrifugal Compressors: Stage velocity triangles, slip factor, power input factor	10	CO10	L2
34	Stage work, Pressure developed, stage efficiency and surging	10	CO9	L2
35	Axial flow Compressors: Expression for pressure ratio developed in a stage,	10	CO9	L2
36	Explain work done factor, efficiencies and stalling. Problems.	10	CO9	L2

F. EXAM PREPARATION

1. University Model Question Paper

Cours	e:	TURBO MACI	HINES				Month /	Year		01/01/20
Crs Co		17ME53	Sem:	V	Marks:	100	Time:			180 minutes
Mod ule	Note	Answer all FIV	E full questi	ons. All ques	tions carry equ	al marks.		Marks	CO	
1		Define Turbo machines.	machines.	With neat s	ketch explain	the parts of	of a Turbo	6	CO1	
	b	What are the cla	ssification of	of Turbo mac	hines?			4	CO2	
		Explain the sign of the sign of the sign of the second sec		of flow coe	fficient, head	coefficient	and power	6	CO2	
				O	R					
		Define the follo (i) Total to total				7		4	CO2	
	b	What is Reheat multistage turbi		now that the	reheat factor	is greater the	an unity in	6	CO2	
		Explain static a static a static and stagnatic and stagnatic static and stagnatic stagnatic states a state of the state of				1 an expressi	on relating	6	CO2	
2		Derive an alte significance of e	8	CO3						
		An output of 10 of 800 rpm und turbine which v efficiencies are preferred	er a head o vorks under	f 20 m. Wha head of 180	t is the diameted m, at a speed	er and output of 200 rpm	of another when their	•	CO3	
				O	R					
	а	Derive the expr	ression for, o	legree of read	ction, for axial	flow compre	ssor	4	CO4	
		Derive an expression of theoretical head capacity relationship of radial outward flow devices							CO4	
		Air enters a con °C and aflow v static temperatu above the inlet. ii) The actual ch	relocity of 5 re is100° C Evaluate: i)	50 m/s. At th and the flow The isentrop	e exit the stat	ic pressure is 0 m/s. The o	3 bar, the		CO4	

		iii) Efficiency of compressor.		
3	a	Draw the inlet and exit velocity triangles for a single stage steam turbine. Derive for maximum blade efficiency	8	CO5
	b	single stage impulse turbine rotor has a diameter of 1.2m running at 3000 rpm. The nozzle angle is 18°. Blade speed ratio is 0.42. The ratio of relative velocity at outlet to relative velocity at inlet is 0.9. The outlet angle of the blade is 3 ° smaller than the inlet angle. The steam flow rate is 5kg/s. Draw the velocity diagram and find the following : i) Velocity of whirl ii) Axial thrust on the bearings iii) Blade angles iv) Power developed.	8	CO5
	a	OR Define and explain i) nozzle efficiency ii) diagram efficiency iii) stage efficiency iv) compounding of steam turbines.	8	CO6
	b	In a Curtis stage turbine, steam enters the first row of moving blades at 700m/s. The outlet angles of the nozzle, the first rotor blade, the stator blade and the last rotor blade37°. The mean blade speed is 160m/sec, the blade respectively are 17°, 23°,coefficient is 0.93 for all blades and steam flow rate is 162 kg/min. Estimate i) power developed in the stage ii) rotor efficiency iii) axial thrust and iv) tangential force on blades	8	CO6
4	a	Derive the expression for condition for Maximum efficiency of pelton wheel	8	CO7
	b	Show that for maximum utilization, the speed of the wheel is equal to half the speed of jet.	8	C07
	а	What is Draft tube and Explain the types and functions.	6	CO8
	b	Explain hydraulic efficiency, overall efficiency, volumetric efficiency, with respect to hydraulic machines	4	CO8
	c	A Kaplan turbine develops 9000 kW under a head of 10m. Overall efficiency of the turbineis 85%. The speed ratio based on outer diameter is 2.2 and flow ratio 0.66. Diameter of theboss is 0.4 times the outer diameter of the runner. Determine the diameter of the runner, boss diameter and specific speed of the runner.	6	
5	a	Minimum speed for starting the flow, Maximum suction lift, Net positive suction head	8	CO9
	b	A three stage centrifugal pump has impeller 40 cm in decimeter and '2.5 cm wide at outlet. The vanes are cuived back at an angle of 30° and reduces the circumferential area by 15%. The manometric efficiency = 85% and overall efficiency = 75%. Determine the headgenerated by the pump when running at 1200 rpm and discharges 0.06 m3/sec. Find the shaftpower also.	8	CO9
		OR		0010
	a	Explain the Stage velocity triangles, slip factor, power input facto Axial flow Compressors:	8	CO10
	b	An axial flow compressor has the following data entry condition 1 bar, 20 reaction 50% mean blade ring diameter 36 cm, Rotational speed 18000rpm blade height at entry 6 cm, Blade angle at rotor and stator exit 65' axial velocity 180 m/s mechanical efficiency 0.967.Find (i) Guide blade angle at outlet.	8	CO10
		(ii) Power required to drive the compressor.		

2. SEE Important Questions

Course:	TURBO MACH	INES				Month /	'Year	0	1/01/19
Crs Code:	17ME53	Sem: V	3	Marks:	80	Time:		180 mi	nutes
Note	Answer all FIVE	full question	ıs.				-	-	
Modu Q no.	Important Questi	on					Marks	CO	Year
17ME53					Copyright ©	2017. cAAS. All	rights rese	erved.	

le					
1	1	Differentiate between a positive displacement machine and a turbomachine.	5	CO1	2016
	2	Define specific speed of a turbine. Derive an expression for specific speed of a pump.	5	CO2	2015
	3	An output of 10 KW was recorded on a turbine of 0.5 m dia running at a speed of 800 rpmunder a head of 20 m. What is the diameter and output of another turbine which works undera head of 180 m, at a speed of 200rpm when their efficiencies are same? Find the specific speed and name the turbine which you preferred	6	CO2	2017
2	1	Define degree of reaction (R). Derive an expression relating utilization factor with degree of reaction	8	CO3	2017
	2	Show that for an axial flow turbine subjected under maximum utilization factor condition, the speed ratio 4) is given by $2/3 \cos a i$, where `U' is the tangential speed of the rotor and VI ' is the tangential jet velocity of the fluid. Assume flow velocity to remain constant Take Degree of Reaction R = $1/4$.	8	CO4	2016
3	1	Define and explain diagram efficiency and stage efficiency.	6	CO5	2018
5	2	velocity compounded impulse wheel has two rows of moving blades with a	10	C05	2018
		 meandianieter of 70 cm. The speed of rotation is 3000 rpm and the nozzle angle is 16° and theestim,ated\ steam velocity at the nozzle outlet is 610 m/sec. The mass of steam passingthrough the blades per second is 5.5 kg. Assuming that the energy loss in each row of blades(moving and fixed) is 24% of the kinetic energy of the steam entering the blades. The outletangles of the blades are 1. First row of moving blades = 18° 2. Intermediate guide blades = 22° 3. Second row of moving blades = 38° Draw the diagram of relative velocities and derive the following: i) Blade inlet angles ii) Power developed in each row of moving blades (12 Marks) iii) Efficiency of the wheel ac a whole. 			
4	1	with a neat sketch, explain the working of a Kaplan turbine. Draw the velocity triangles at inlet and outlet of the turbine. Also explain the function of draft tube.	8	CO7	2018
	2	An inward flow reaction turbine with radial discharge having overall efficiency 80% whenpower developed is 147 kW. The head is 8m. The peripheral velocity of the fluid is0.96 jiff and flow velocity of the fluid is 0.36 2gH. The speed of the rotor is 1500 rpmand hydraulic energy losses is 22% of available energy. Determine the following :i) Inlet guide vane and blade angles 2) width of the rotor 3) dia of rotor	8	CO8	2016
5	1	Explain the phenomenon of (i) surging (ii) chocking in the centrifugal compressor	8	CO9	2018
	2	A three stage centrifugal pump has impeller 40 cm in decimeter and '2.5 cm wide at outlet. The vanes are cuived back at an angle of 30° and reduces the circumferential area by 15%. The manometric efficiency = 85% and overall efficiency = 75% . Determine the headgenerated by the pump when running at 1200 rpm and discharges 0.06 m3/sec. Find the shaft power also.	8	CO10	2007

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Cours

Mo	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructio	Assessment
dul	(Split module content into 2 parts which have	Teaching	Learning	Bloo	Action	n	Methods to
e- #	similar concepts)	Hours	Levels for	ms'	Verbs for	Methods	Measure
			Content	Level	Learning	for	Learning
						Learning	
Α	В	С	D	E	F	G	H
1	Introduction: Definition of turbo machine, parts of	7	- L1	L2	Understan	- Lecture	- Assignment
	turbo machines, Comparison with positive		- L2		d	-	-

	COURSE PL		2017 20				
	displacement machines, Classification, Dimensionless parameters and their significance, Effect of Reynolds number, Unit and specific quantities, model studies. (Note: Since dimensional analysis is covered in Fluid Mechanics subject, questions on dimensional analysis may not be given. However, dimensional parameters and model studies may be given more weightage.)					-	-
1	Thermodynamics of fluid flow: Application of first and second law of thermodynamics to turbo machines, Efficiencies of turbo machines, Static and Stagnation states, Incompressible fluids and perfect gases, overall isentropic efficiency, stage efficiency (their comparison) and polytropic efficiency for both compression and expansion processes. Reheat factor for expansion process General Analysis of Turbo machines: Radial flow	3	- L2 - L2 - L2		Understan d Understan	-	- Assignment - - Assignment
	compressors and pumps – general analysis, Expression for degree of reaction, velocity triangles,		- L2		d	-	-
	Effect of blade discharge angle on energy transfer and degree of reaction, Effect of blade discharge angle on performance, Theoretical head – capacity relationship, General analysis of axial flow pumps and compressors, degree of reaction, velocity triangles, Problems.	4	- L2 - L2	L2	Understan d	- Lecture -	- Assignment -
	Steam Turbines: Classification, Single stage impulse turbine, condition for maximum blade efficiency, stage efficiency,	4	- L2 - L2	L2	Understan d	- Lecture -	- Assignment -
3	compounding, Multi-stage impulse turbine, expression for maximum utilization factor. Reaction turbine – Parsons's turbine, condition for maximum utilization factor, reaction staging. Problems	6	- L2 - L2	L2	Understan d	- Lecture - -	- Assignment - -
	Hydraulic Turbines: Classification, various efficiencies. Pelton turbine – velocity triangles, design parameters, Maximum efficiency.	4	- L2 - L2	L2	Understan d	- Lecture - -	- Assignment - -
	Francis turbine - velocity triangles, design parameters, runner shapes for different blade speeds. Draft tubes- Types and functions. Kaplan and (10 Hours) Propeller turbines - velocity triangles, design parameters. Problems.	6	- L2 - L2	L2	Understan d	- Lecture - -	- Assignment - -
	Centrifugal Pumps: Classification and parts of centrifugal pump, different heads and efficiencies of centrifugal pump, Minimum speed for starting the flow, Maximum suction lift, Net positive suction head, Cavitation, Need for priming, Pumps in series and parallel.	6	- L2 - L2		Understan d	-	- Assignment - -
5	Centrifugal Compressors: Stage velocity triangles, slip factor, power input factor, Stage work, Pressure developed, stage efficiency and surging and problems. Axial flow Compressors: Expression for pressure ratio developed in a stage, work done factor, efficiencies and stalling. Problem	4	- L2 - L2	L2	Understan d	- Lecture - -	- Assignment - -

2. Concepts and Outcomes:

					imple course	
Mo	0	Identified	Final Concept	Concept Justification	CO Components	Course Outcome
dul	Outcome from	Concepts		(What all Learning	(1.Action Verb,	
e- #	study of the	from		Happened from the	2.Knowledge,	
	Content or	Content		study of Content /	3.Condition /	Student Should be
	Syllabus			Syllabus. A short word		able to
				for learning or	4.Benchmark)	
				outcome)		
Α	Ι	J	K	L	М	N
1	Definition for	Precise	Dimensionless		Understand	Definition for TM
	ТМ	definition	parameters.	Dimensionless		Dimensionless
	Dimensionless			parameters.		parameters.
	*		Efficiency			
			Reheat factor	Efficiency Reheat		Efficiency Reheat
	2	factor	model studies	factor model studies		factor model studies
		model				
		studies				
2	Velocity	Velocity	energy	Velocity triangle.	Understand	Velocity triangle.
		triangle.	transfer	Work done and energy		Work done and energy
	Work done and	Work done		transfer		transfer
	energy					
	transfer					
	Enthalpy		Enthalpy		Understand	Enthalpy change.
	change.	-	change.	stage efficiencies		stage efficiencies
	stage		stage			
	efficiencies	efficiencies			TT 1 / 1	T CC'
4	Efficiency,	Efficiency,	Efficiency,	.	Understand	Efficiency,
	-	design		design parameters.	Analyze	design parameters.
	•	parameters.			XX 1 . 1	
5	Power, work	Power,	, work done	work done factor,	Understand	Power, work done
		Efficiency.	factor	Efficiency.		factor, Efficiency.
	Efficiency.					

Table 2: Concept to Outcome – Example Course